It is a notion related to divergence but in a jet bundle context. Given a jet space $J^n(\mathbb{R}^p,\mathbb{R}^q)$ and $p$ smooth functions defined on it $P=(P_1,\ldots,P_p)$ the total divergence of $P$ is
$$ \mbox{Div} P=\sum D_{x_j} P_j $$with $D_{x_j}$ the total derivative operators.
I think that the $p$-tuple $P$ should be thought as a total vector field.
________________________________________
________________________________________
________________________________________
Author of the notes: Antonio J. Pan-Collantes
INDEX: